Properties of Classical and Quantum Jensen-Shannon Divergence

نویسندگان

  • Jop Briët
  • Peter Harremoës
چکیده

Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JDα for α > 0), the Jensen divergences of order α, which generalize JD as JD1 = JD. Using a result of Schoenberg, we prove that JDα is the square of a metric for α ∈ (0, 2] , and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order α (QJDα). We strengthen results by Lamberti et al. by proving that for qubits and pure states, QJD α is a metric space which can be isometrically embedded in a real Hilbert space when α ∈ (0, 2] . In analogy with Burbea and Rao’s generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jensen divergence based on Fisher's information

The measure of Jensen-Fisher divergence between probability distributions is introduced and its theoretical grounds set up. This quantity, in contrast to the remaining Jensen divergences, is very sensitive to the fluctuations of the probability distributions because it is controlled by the (local) Fisher information, which is a gradient functional of the distribution. So, it is appropriate and ...

متن کامل

Graph Characteristics from the Quantum Jensen-Shannon Graph Kernel

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density o...

متن کامل

A quantum Jensen-Shannon graph kernel for unattributed graphs

In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen–Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated wit...

متن کامل

Characterizing graph symmetries through quantum Jensen-Shannon divergence.

In this paper we investigate the connection between quantum walks and graph symmetries. We begin by designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon d...

متن کامل

A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks

In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008